Search results for "Fuel-breeder pin"

showing 2 items of 2 documents

Advancements in the Helium-Cooled Pebble Bed Breeding Blanket for the EU DEMO: Holistic Design Approach and Lessons Learned

2019

The helium-cooled pebble bed (HCPB) blanket is one of the two concepts proposed as a driver blanket for the European Union Demonstration Fusion Power Reactor (EU DEMO). In contrast to past conceptual design studies, in the frame of the current Power Plant Physics and Technology of the EUROfusion Consortium, the ongoing EU DEMO preconceptual design activities have adopted a holistic and integrated (i.e., systems engineering) design approach. As a consequence of this new approach, many interfaces and requirements have been identified, some of them driving the design of the blankets. This paper shows the advancements in the HCPB breeding blanket and describes the lessons learned after implemen…

Nuclear and High Energy Physics020209 energyNuclear engineering02 engineering and technologyBlanket01 natural sciences7. Clean energy010305 fluids & plasmasTritium breeding ratio0103 physical sciences0202 electrical engineering electronic engineering information engineeringmedia_common.cataloged_instanceGeneral Materials ScienceHolistic designEuropean unionPebbleDEMOtritium breedingCivil and Structural Engineeringmedia_commonMechanical EngineeringFusion powertritium breeding ratioHelium-cooled pebble bedNuclear Energy and EngineeringEnvironmental sciencefuel-breeder pin
researchProduct

An enhanced, near-term HCPB design as driver blanket for the EU DEMO

2019

The Helium Cooled Pebble Bed (HCPB) breeding blanket is a candidate as driver blanket for the EU DEMO. The reference design of the HCPB is based on a cooling plate “sandwich” arrangement built in Multi-Module Segments. This architecture significantly improved the tritium breeding performance (TBR = 1.15) and the plant circulating power (≈130 MW) compared to the former ITER-like “beer-box”-like design (TBR<1.10, plant circulating power>200 MW). However, several issues remain with this design, in which (1) the still large power required per He circulator (beyond the state-of-the-art for these components) and (2) the large tritium inventory foreseen in Be have been identified as the most…

Pressure dropDriver blanket; Enhanced HCPB; EU DEMO; Fuel-breeder pin; TBRComputer scienceEU DEMOMechanical EngineeringNuclear engineeringReference designCirculatorBlanket01 natural sciences7. Clean energy010305 fluids & plasmasFuel-breeder pinNuclear Energy and EngineeringEnhanced HCPB0103 physical sciencesTurbomachineryHeat transferGeneral Materials ScienceNeutronMultiplier (economics)Driver blanket010306 general physicsCivil and Structural EngineeringTBR
researchProduct